Roll No.

367452(37)

B. E. (Fourth Semester) Examination, 2020

(New Scheme)

(Mechatronics Branch)

Album at S. Arrest Estima

FLUID MECHANICS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) from each question is compulsory.

Attempt any two parts from parts (b); (c)

and (d) of each part carries 7 marks.

out for maker of Unit-Language and and and

1. (a) Define surface tension.

2

Г	2
	4

(b) Define and derive the equation of Pascal's law.

	(c)	A plate 0.05 mm distant from a fixed plate moves at 1.2 m/s and requires a force of 2.2 N/m ² to maintain the speed. find the viscosity of the fluid between the plates.	7
	(d)	A Urinate plate 1.5 m diameter is submerged in water, with its greatest and least depths below the surface being 2 m and 0.75 m respectively. Determine:	7
		(i) Total pressure an one face of the plate, and(ii) The position of the centre of pressure.	
		Unit-II	
2.	(a)	What is a streak line?	2
		Explain: A more sured was the street.	7
		(i) Steady and unsteady flow, and	
e :		(ii) One dimensional, two dimensional and three dimensional flows.	

(c)	What	is a	flow	net?	Explain	its	characteristics	and

[3]

(d) What is stream function? What are its properties.

Unit-III

3. (a) State Bernoulli's equation.

utilities.

2

- (b) Water flows in a circular pipe. At one section the diameter is 0.3 m, the static pressure is 260 kPa gauge, the velocity is 3 m/s and the elevation is 10 m above the ground level. The elevation at a section downstream is 0 m and the pipe diameter is 0.15 m. Find out the gauge pressure at the downstream section. Frictional effects may be neglected. Assume density of water to be 999 kg/m³.
- (c) Derive Bernoull's equation by using Euler's equation. 7
- (d) Explain the construction of a venturimeter and derive an expression for actual discharge of the fluid.

Unit-IV

367452(37)

4. (a) Define Hydraulic Gradient line.

2

7

7

b) Explain Reynold's experiment to show the type of
fluid flow.
c) In a pipe of 300 mm diameter and 800 m length an
oil of specific gravity 0.8 is flowing at the rate of 0.45 m ³ /s.
Find: achien Bernaulli's equation 2
(i) Head loss due to friction and (ii) Power required to maintain the flow
Take Kinematic viscosity of oil as 0.3 × 10-4
to above the ground lovel. The election and farming
(d) What are the different reasons for the major and the minor energy loss in a pipe? What is water hammer? 7
an gui (Phreyon nou vi to vilisacio
 (a) s Define Dimensional Homogneity somed a methor 2
b) What do you mean by dimensionless number?
Explain any three set lauton not no escarpe out 7
(c) Write short notes onition 7
(i) Euler's Model Law and contained to the total (ii) .

- (ii) Weber's Model Law
- (d) Show by the use of Buckingham's π theorem that the velocity through a circular orifice is given by:

$$V = \sqrt{2gH} \, \phi \, \left[\frac{D}{H}, \, \frac{\mu}{\rho VH} \right]$$

where H = Head causing flow

 μ = Coefficient of viscosity

g = acceleration due to gravity

D =Diameter of the orifice

 ρ = mass density

V = Velocity of flow